2024澳门原料免费

铝及其合金在工业生产和社会生活中的应用日益广泛,由于比重小、导电(热)性好、铸造性和机械加工性优良,铝在现代工业材料中的重要作用不可替代。在航空、航天、通信、汽车、电子、家电、生活用品等方面,为了减轻重量、提高功效、增强美观,以铝代铜、以铝代钢取得了可喜的成就。这些成就的取得很大程度上依赖于焊接技术的发展,尤其是钎焊和氩弧焊,探讨铝的氩弧焊、钎焊以及钎焊、氩弧焊用铝焊丝的制造技术有着长远的意义。

1铝焊料的制造工艺

目前工业生产中常用的铝焊料制造工艺主要有两种:其一是铸锭——挤压——拉拔工艺,主要用于钎焊材料和部分氩弧焊丝生产;其二是熔铸——连铸——拉拔,主要用于氩弧焊丝生产。

2.铝焊料的铸锭——挤压——拉拔工艺

在铝焊料的铸锭——挤压——拉拔工艺中。核心技术是挤压,挤压温度、挤压速度、挤压变形指数是关键参数;铸锭预热、模具预热、模具设计也是重要环节。在铸锭的获取方式上,金属模铸锭和半连续铸锭是主流。

2.1挤压技术的特点

挤压技术的许多优越性中,以下两方面对铝焊料的生产是最有利的。

在挤压过程中,被挤金属在变形区中能获得比轧制、锻造更为强烈和均匀的三向压缩应力状态,这就可以充分发挥被加工金属本身的塑性。因此,用挤压法可加工那些用轧制法和锻造法加工有困难、甚至无法加工的低塑性、难变形金属。例如铝硅共晶和铝硅铜钎料经热挤压后可以进行拉拔。

挤压加工的灵活性很大,只需要更换模具等挤压工具,即可在一台设备上生产形状和品种不同的制品,更换挤压工具的操作简便易行。这一特点对批量小、品种规格多的的钎焊材料尤其适宜。

挤压技术还存在许多有待改进的问题。例如:几何废料损失较大、挤压速度远低于水平连铸速度、生产效率低、市场响应慢、工模具消耗量大等。

2.2挤压技术的现状及前景

挤压技术兴起于上世纪初。20世纪20年代第一台200吨挤压机问世,1941年德国的施洛曼(Sehloeman)公司制造了12000吨挤压机。目前,应用中的最大挤压机是美国雷诺公司的27000吨挤压机。

挤压技术问世以来,挤压工艺的完善和发展从未间断过。冷挤压、润滑挤压、等温挤压、水冷模挤压、连续挤压、快速挤压、包套挤压、静液挤压、脱皮积压、复和挤压、有效摩擦挤压、舌型模挤压、平面组合模挤压、分流组合模挤压、变断面挤压、扁挤压、螺旋挤压、宽展挤压、辊挤、冲挤、淬火挤等挤压技术层出不穷。

挤压技术的发展日新月异,超塑性挤压、液态挤压、半固态挤压等新工艺的研究已取得可喜进展。

2.3模具的设计与制造

随着挤压技术的发展,工模具的设计已发展成为一门新兴的学科。

挤压工模具包括模架、模套、挤压筒、挤压轴、挤压垫、挤压模、模支撑等。模具是保证产品形状、尺寸和精度的基本工具,也是保证产品内外质量、影响挤压速度、挤压力的最重要因素之一。合理的模具结构、形状和尺寸,在一定程度上可控制产品内部组织和力学性能。

模具设计和制造必须满足挤压工艺要求,同时,挤压模具的使用寿命是最需关注的问题。模具材料的选取、热处理及表面处理工艺、结构设计、机加工及电加工、使用维护等是影响模具寿命的主要因素。

2.4铝焊料的挤压

有色金属焊接用焊丝的丝坯通常由铸锭——挤压获得,其中,铜焊丝(带)、部分铝焊丝(带)常由大型有色金属加工厂生产,由于焊接材料生产批量小,生产质量波动大,给生产组织带来诸多不便;而铜磷焊料、银基焊料、部分铝基焊料由焊料专业生产厂家生产,生产中常用100--800吨油压机挤压。

铝镁、铝锰焊丝是最好挤压的两类焊丝,铝硅氩弧焊丝的挤压性尚可,铝硅钎料的挤压速度较低、效率也低,铝硅铜和铝硅铜锌是最难挤压的两类钎料。

在铝焊料的生产中,生产效率低、生产周期长、回炉料比例高是影响经济效益的主要原因。

2.5焊料生产中挤压的应用

挤压加工在钎焊材料的生产中占有特殊地位,这是因为挤压技术长期被国内外钎料制造者广泛采用。采用挤压加工技术生产钎料比其他压力加工方法更适宜于多品种小批量的特点。随着科学技术的不断进步,人们总在不断的研究和开发各种钎料成型技术,这些技术具备良好的应用前景,但是目前还不可能取代挤压成型。有两方面的原因使挤压成型在钎料成型中占主导地位,一是长期的思维习惯——钎料生产一直采用挤压成型;二是挤压加工在技术上的可靠性、稳定性和成熟性。

3铝焊料的熔铸——连铸——拉拔工艺

3.1水平连铸设备的性能和要求

一套性能完备、可靠的连铸设备,是进行铝钎料熔态抽拉成丝的关键。熔铸--连铸的设备必须满足生产过程中工艺参数调整要求,同时,还应适宜铝焊料的小批量生产的特点。具体的技术要求是:

保温包液面高度的检测和控制由自适应系统实现调节。

熔炼炉容积与生产批量相适应。

为了精确控制熔体温度,保温炉选用红外陶瓷加热元件加热,用热电偶测温,用可控硅调压方式实现热平衡。

炉体适应于多个结晶器同时工作;一次和二次冷却的冷却强度均可调。

抽拉装置选用直流电机配摆线针轮减速机做动力,电机的调速选用PWM控制电路,用链传动实现多头抽拉。铝锰焊丝的抽拉头数可以达到32头。抽拉丝坏的直径越细越有利于拉拔,但是,过细的丝径带来抽拉速度的降低,一半选用4~6毫米为宜。

3.2自动控制系统的成本和可靠性

铝焊丝连铸过程中,抽拉速度、熔体温控和液面高度三部分要用到自适应控制技术,采用PLC集成控制的技术可以可靠实现制动控制。人工开环控制的设备也在生产中有所应用,但其生产稳定性较差。

3.3热平衡

熔体的温度控制是由加热元件的发热量和系统散热量的平衡予以实现的,在添加金属液和抽拉即将结束时,系统被阶跃的热量冲击,处于瞬态不稳定状态。

生产中,一般采用等温添加金属液和改变抽拉速度的技术方案来稳定焊丝的过冷度。

3.4生产效率

由于连铸丝坯的直径较小,同时熔体抽拉速率也有限,实际应用中,势必限制生产效率,目前较先进的技术是增加抽拉根数,采用多头同时抽拉的技术路线。

熔体抽拉所获得的钎料坯料不存在“形变织构”,对后续生产的冷塑加工效率有一定影响。在不影响焊料性能的前提下,加入钛、硼、细化晶粒技术能否提高道次加工率。

3.5焊料化学成分控制

焊接材料是精密合金,其化学成分允许波动的波幅小;更不利于成分控制的因素是焊料中存在易挥发、氧化的易损耗元素(例如锌)。上述两个因素使焊料主成分控制显得重要和困难。

生产中,不可避免用到回炉的废料,这就使得微量元素和杂质元素的控制受到挑战。

生产实践中,一半是建立在数理统计理论基础上控制主成分和杂质元素,采用成品前抽样分析的方法判定合格与否。

3.6钎料微观组织的控制

熔铸——连铸——拉拔工艺中的成分偏析现象是不可避免的,质量控制的重点在于如何减少和消除它。

水平连铸中较常见的偏析形式有:比重偏析、枝晶偏析、晶界偏析和区域偏析。

比重偏析是由于金属液中各组成物间的比重差较大,在保温包以及冷却较慢时溶质产生上浮或下沉而引起的。与之相关因素有钎料性质,冷却速度,初晶的比重、形状和大小,铸造工艺等。如果合金液在抽拉前长时间静置,将引起严重的比重偏析。

枝晶偏析在固液相线差较大的固溶体合金中尤为突出。其成因在于合金在凝固温度范围内进行选分结晶的结果,使先后形成的结晶成分浓度不一样。部分钎料的枝晶偏析很严重。

晶界偏析使低熔点物质聚集于晶界形成的,由于晶界偏析不能通过均匀化退火予以消除,其危害可延续至钎料钎焊后的钎焊接头的热裂、晶界腐蚀等。

区域偏析有正偏析和反偏析之分。值得指出的是区域偏析在铸锭——挤压的钎料生产工艺中同样存在。

生产实践中,一般采用下列措施预防或减少偏析:变质处理,搅拌熔体,降低浇温,增大冷却强度,加强二次水冷,后续扩散退火等。

3.7铝焊料的拉拔和刮皮

在铝焊料的塑性加工工艺中,单次拉丝机、活套拉丝机、滑轮拉丝机、直线拉丝机、直进拉丝机均有应用。目前直进式拉丝机的生产效率最高,产品质量也最好。

铝焊料的表面处理工艺有超声波清洗;热浓碱溶液清洗加浓硝酸光化、再用水清洗;刮皮模精刮丝皮等技术。其中精刮技术最为先进,主要表现在焊丝表面清洁,耐大气腐蚀性优于浓碱清洗。

4结论

(1)目前铝钎料的制造多用铸锭——挤压——拉拔工艺。半连续铸锭、等温挤压配合连续拉拔工艺质量稳定,但设备投资大。

(2)熔铸——连铸——拉拔工艺开始在铝氩弧焊丝生产中得到应用。水平连铸配合拉拔刮皮工艺生产效率高,但是质量控制难度大。

(3)直进式拉拔和精刮工艺是提高铝焊料生产效率、保障铝焊料产品质量的先进工艺。